Noninvasive bipolar double-pulsed-field-gradient NMR reveals signatures for pore size and shape in polydisperse, randomly oriented, inhomogeneous porous media.
نویسندگان
چکیده
Noninvasive characterization of pore size and shape in opaque porous media is a formidable challenge. NMR diffusion-diffraction patterns were found to be exceptionally useful for obtaining such morphological features, but only when pores are monodisperse and coherently placed. When locally anisotropic pores are randomly oriented, conventional diffusion NMR methods fail. Here, we present a simple, direct, and general approach to obtain both compartment size and shape even in such settings and even when pores are characterized by internal field gradients. Using controlled porous media, we show that the bipolar-double-pulsed-field-gradient (bp-d-PFG) methodology yields diffusion-diffraction patterns from which pore size can be directly obtained. Moreover, we show that pore shape, which cannot be obtained by conventional methods, can be directly inferred from the modulation of the signal in angular bp-d-PFG experiments. This new methodology significantly broadens the types of porous media that can be studied using noninvasive diffusion-diffraction NMR.
منابع مشابه
Microscopic and compartment shape anisotropies in gray and white matter revealed by angular bipolar double-PFG MR.
Diffusion MR has become one of the most important tools for studying neuronal tissues. Conventional single-pulsed-field-gradient methodologies are capable of faithfully depicting diffusion anisotropy in coherently ordered structures, providing important microstructural information; however, it is extremely difficult to characterize randomly oriented compartments using conventional single-pulsed...
متن کاملAccurate noninvasive measurement of cell size and compartment shape anisotropy in yeast cells using double-pulsed field gradient MR.
The accurate characterization of pore morphology is of great interest in a wide range of scientific disciplines. Conventional single-pulsed field gradient (s-PFG) diffusion MR can yield compartmental size and shape only when compartments are coherently ordered using q-space approaches that necessitate strong gradients. However, double-PFG (d-PFG) methodology can provide novel microstructural in...
متن کاملO27 Observing Diffusion-Diffraction Patterns in Heterogeneous Specimens Using the Double-PFG NMR Methodology
Specimens Using the Double-PFG NMR Methodology Noam Shemesh 1, Evren Ozarslan 2, Peter Basser 2, Yoram Cohen 1 1 Tel Aviv University, 2 National Institute of Health Discussion Diffusion-diffraction patterns arising from restricted diffusion are extremely important for characterizing pore morphology. In conventional single-PFG (sPFG) NMR experiments, pore size can be directly inferred from the m...
متن کاملNMR Diffusion Measurements of Complex Systems
The pulsed gradient spin-echo nuclear magnetic resonance experiment is a powerful tool for studying the constitution and structure of complex systems (e.g., polydisperse systems and porous media). In applications to polydisperse systems, it is important to consider the effects of obstruction, exchange, entanglement, and diffusional averaging processes whereas in applications to porous samples, ...
متن کاملA proposed 2D framework for estimation of pore size distribution by double pulsed field gradient NMR.
Reconstructing a pore size distribution of porous materials is valuable for applications in materials sciences, oil well logging, biology, and medicine. The major drawback of NMR based methods is an intrinsic limitation in the reconstruction which arises from the ill-conditioned nature of the pore size distribution problem. Consequently, while estimation of the average pore size was already dem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 133 4 شماره
صفحات -
تاریخ انتشار 2010